Abstract

The mobility solution provided by Mobile IPv6 (MIPv6) imposes too much signaling load to the network and enforces large handoff latency to end user. Hierarchical MIPv6 (HMIPv6) on the other hand, is designed by organizing MIPv6 in layered architecture and performs better than MIPv6 in terms of handoff latency and signaling load. Observation shows that, there is still possibility to shrink the handoff latency and the signaling load by further extending HMIPv6 into multiple layers. To explore this possibility of enhanced performance through layered architecture, this paper aimed at mathematical exploration of an N-layered MIPv6 network architecture in order to figure out the optimal levels of hierarchy for mobility management. A widespread analysis is carried out on various parameters such as location update frequency and cost, handoff latency and packet delivery cost. Influence of queuing delay on handoff latency is examined by modeling M/M/1/K queue in the architecture and user mobility is modeled using Markov chain. Analytical investigation reveals that three levels of hierarchy in MIPv6 architecture provide an optimal solution for mobility management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.