Abstract

Abstract2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W−1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W−1) and detectivity (2.67 × 109 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.