Abstract

In this paper, influence of modified strain gradient theory (MSGT) on buckling, free and forced vibration characteristics of the composite cylindrical nanoshell reinforced with graphene nanoplatelet (GPL) in thermal environment is investigated. The material properties of piece-wise functionally graded graphene-reinforced composites GPLRC are assumed to be graded in the thickness direction of a cylindrical nanoshell and are estimated through a nanomechanical model. The results show that GPL distribution pattern, three length scale parameters, number of layers and GPL weight function have important role on resonance frequencies, buckling load, relative frequency and dynamic deflections of the GPLRC cylindrical nanoshell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.