Abstract

The dynamic regulation of metabolic pathways is based on changes in external signals and endogenous changes in gene expression levels and has extensive applications in the field of synthetic biology and metabolic engineering. However, achieving dynamic control is not trivial, and dynamic control is difficult to obtain using simple, single-level, control strategies because they are often affected by native regulatory networks. Therefore, synthetic biologists usually apply the concept of logic gates to build more complex and multilayer genetic circuits that can process various signals and direct the metabolic flux toward the synthesis of the molecules of interest. In this review, we first summarize the applications of dynamic regulatory systems and genetic circuits and then discuss how to design multilayer genetic circuits to achieve the optimal control of metabolic fluxes in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call