Abstract
A multilayer neural network based on multi-valued neurons (MLMVN) is considered in the paper. A multi-valued neuron (MVN) is based on the principles of multiple-valued threshold logic over the field of the complex numbers. The most important properties of MVN are: the complex-valued weights, inputs and output coded by the kth roots of unity and the activation function, which maps the complex plane into the unit circle. MVN learning is reduced to the movement along the unit circle, it is based on a simple linear error correction rule and it does not require a derivative. It is shown that using a traditional architecture of multilayer feedforward neural network (MLF) and the high functionality of the MVN, it is possible to obtain a new powerful neural network. Its training does not require a derivative of the activation function and its functionality is higher than the functionality of MLF containing the same number of layers and neurons. These advantages of MLMVN are confirmed by testing using parity n, two spirals and "sonar" benchmarks and the Mackey---Glass time series prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.