Abstract

The polychromatic integral diffraction efficiency (PIDE) metric is generally used to select the most suitable materials for multilayer diffractive optical elements (MLDOEs). However, this method is based on the thin element approximation, which yields inaccurate results in the case of thick diffractive elements such as MLDOEs. We propose a new material selection approach, to the best of our knowledge, based on three metrics: transmission, total internal reflection, and the optical component's total thickness. This approach, called "geometric optics material selection method" (GO-MSM), is tested in mid-wave and long-wave infrared bands. Finite-difference time-domain is used to study the optical performance (Strehl ratio) of the "optimal" MLDOE combinations obtained with the PIDE metric and the GO-MSM. Only the proposed method can provide MLDOE designs that perform. This study also shows that an MLDOE gap filled with a low index material (air) strongly degrades the image quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.