Abstract

In energy storage and transportation systems, polymer dielectrics are widely applied in smart grids, electric vehicles, and power conditioning owing to their incomparable power density and high reliability. However, the dielectric constant (ε) and breakdown strength (Eb) normally cannot be increased simultaneously, which results in insufficient discharged energy density especially at high temperatures. In this work, enhanced Eb and high energy density are archived in multilayer polymer nanocomposites by introducing cross-linked dielectric transition layers. Specifically, the sandwiched composite achieves a huge discharge energy density of 4.64 J cm-3 with a charged-discharged efficiency of 84% at 150 °C and 500 MV m-1. The formation of cross-linked dielectric transition layers between layers of the multilayer nanocomposite could effectively restrain the growth of the electrical tree and greatly increase the Eb. This work presents a strategy for designing high-performance multilayered dielectric polymer nanocomposites by introducing cross-linked dielectric transition layers to reduce the loss from interlayer interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call