Abstract

Biodegradable active films based on PHBV, combined with other biopolymers (PLA and starch) and different antimicrobial compounds (essential oils (EO)), were developed and characterized as to their functional and structural properties to obtain materials that better meet food packaging requirements. Plasticization of PHBV was analysed by using different compounds to enhance the PHBV mechanical performance. Likewise, different active compounds (oregano and clove EO, as well as their respective main compounds, carvacrol (CA) and eugenol (EU)) were incorporated into PHBV bilayer films by spraying the actives between two thermo-compressed monolayers. The potential synergy between different EO compounds and their applications to different food when incorporated into PHBV films was also analysed. Multilayer antimicrobial films combining polar (starch) and non-polar (polyester) sheets, incorporating CA, either by spraying it between both layers or incorporating it in the polyester casting solution, were developed to optimise the material functionality. Bioactive xylans and cellulosic fractions from rice husk, which are useful for food packaging applications, were obtained by using an eco-friendlier valorization process based on subcritical water extraction. Although the addition of polyethylene glycol (PEG) of different molecular weight and lauric acid significantly decreased the stiffness and the resistance to break of PHBV films, only PEG1000 yielded more extensible films. Nonetheless, additional strategies would be required to adapt PHBV mechanical properties to certain packaging requirements. Spraying actives at the interface of both PHBV monolayers produced antimicrobial films with appropriate physical properties. The release of the actives from the films was adequate to control the growth of E. coli and L. innocua in vitro. Both actives, CA and EU were effectively released into different food simulants. The release rate was enhanced when the polarity of the simulants decreased, but it fell markedly in fatty systems. The most remarkable synergistic effect for the EO compounds was observed for CA/cinnamaldehyde blends for both bacteria but using different compound ratios. Thus, the results allowed for the optimization of the dose of actives used for food application, thus minimizing their sensory impact. PHBV films with active EO compounds were highly effective against L. innocua and E. coli in the in vitro tests, but they were much less effective in foods. Likewise, no correlation between the amount of active that migrated to the food and the antibacterial effect was observed, which reflected that many compositional factors affect the availability of the antimicrobials to exert their action on a specific food. The 75:25 PLA-PHBV formulation with PEG1000 exhibited the best properties in terms of physical properties and, thus it was used to be the carrier of CA by casting and to develop bilayers with starch. Incorporating CA by spraying it between the polyester and starch sheets was not effective at retaining this active in the bilayers. However, the incorporation of CA into casted polyester films was highly effective at providing practically total CA retention, which led to a notable antimicrobial activity. Moreover, these bilayers exhibited highly improved tensile and water vapour barrier capacity with respect to the starch monolayer. The rice husk valorization, based on subcritical water extraction, allowed for obtaining better preserved hemicelluloses, with antioxidant and antibacterial activity, useful as additives for food or food packaging applications, and cellulosic reinforcing agents to develop biocomposites with enhanced mechanical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.