Abstract

A model is developed to account for the vertical distribution of velocity and nonhydrostatic pressure in one-dimensional open-channel flows. The model is based on both classical multilayer models and depth-averaged and moment equations. The establishment of its governing equations and the flow simulation are performed over a number of flow layers as in classical multilayer models. However, the model also allows for vertical distributions within a flow layer by including both Boussinesq terms and effective stress terms due to depth-averaging operations. These terms are evaluated on the basis of vertically linearly approximated profiles of velocity and pressure. The resulting additional coefficients can be solved by the moment equations for the relevant layers. Three verifications demonstrate satisfactory simulations for water surface profile, as well as vertical distributions for horizontal velocity, vertical velocity, and nonhydrostatic pressure. Sensitivity analysis shows that the model can be applied with fewer flow layers, more flexibility of layer division, and less computational cost than classical multilayer models, without a remarkable compromise in accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.