Abstract
A numerical method was introduced for the estimation of the surface heterogeneity below an adsorbed multilayer of the analyte. The calculation procedure is based on the raw adsorption isotherm data points obtained by frontal analysis experiments. To permit the mapping of the nature of the analyte–surface interaction, a numerical procedure was used to pre-estimate the adsorbate–adsorbate interactions occurring during the adsorption process. The surface heterogeneity estimation was carried out using the affinity-energy distribution calculations with assuming local BET isotherm. In the local BET isotherm the pre-estimated adsorbate–adsorbate interaction constant was used, and the surface heterogeneity was described. After the test of the numerical method with benchmark isotherms, the algorithm was tested on several experimental isotherms. The isotherms were measured using phenol as test molecule on reversed phase adsorbents, with different surface coverage of the octadecyl ligands. The surface of the non-end-capped stationary phases showed detectable heterogeneity, while the surface end-capped phases were found to be homogeneous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.