Abstract
In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's A_r and C_r extensions and of the author's recent A_r extension of Bailey's 6-psi-6 summation formula. By combining these new multidimensional matrix inverses with A_r and D_r extensions of Jackson's 8-phi-7 summation theorem three balanced very-well-poised 8-psi-8 summation theorems associated with the root systems A_r and C_r are derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.