Abstract
A hybrid structure composed of a local resonance mass and an external oscillator is proposed in this paper for restraining the elastic longitudinal wave propagation. Theoretical model has been established to investigate the dispersion relation and band gaps of the structure. The results show that the hybrid structure can produce multi-band gaps wider than the multi-resonator acoustic metamaterials. It is much easier for the hybrid structure to yield wide and low band gaps by adjusting the mass and stiffness of the external oscillator. Small series spring constant ratio results in low-frequency band gaps, in which the external oscillator acts as a resonator and replaces the original local resonator to hold the band gaps in low frequency range. Compared with the one-dimensional phononic crystal (PC) lattice, a new band gap emerges in lower frequency range in the hybrid structure because of the added local resonance, which will be a significant assistance in low-frequency vibration and noise reduction. Further, harmonic response analysis using finite element method (FEM) has been performed, and results show that elastic longitudinal waves are efficiently forbidden within the band gaps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.