Abstract

HMAC is a popular MAC (Message Authentication Code) that is based on a cryptographic hash function. HMAC is provided with a formal proof of security, in which it is proven to be a PRF (Pseudo-Random Function) under the condition that its underlying compression function is a PRF. Nonetheless, the security of HMAC is limited by a birthday attack, that is, HMAC using a compression function with n- bit output gets forged after about 2n/2 queries. In this paper we resolve this problem by introducing novel construction we call L-Lane HMAC. Our construction is provided with concrete-security reduction accomplishing a security guarantee well beyond the birthday limit. L-Lane HMAC requires more invocations to the compression function than the conventional HMAC, but the performance decline is smaller than those of previous constructs. In addition, L-Lane HMAC inherits the design principles of the original HMAC, such as single-key usage and off-the-shelf hash-function calls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call