Abstract
In today’s world, the conditions of road is drastically improved as compared with past decade. Most of the express highways are made up of cement concrete and equipped with increased lane size. Apparently speed of the vehicle will increase. Therefore there are more chances for accidents. To avoid the accidents in recent days driver assistance systems are designed to detect the various lane. The detected information of lane path is used for controlling the vehicles and giving alerts to drivers. In this paper the entropy based fusion approach is presents for detecting multi-lanes. The Earth Worm- Crow Search Algorithm (EW-CSA) which is based on Deep Convolution Neural Network(DCNN) is utilized for consolidating the outcomes. At first, the deep learning approaches for path location is prepared using an optimization algorithm and EW-CSA, which focus on characterizing every pixel accurately and require post preparing activities to surmise path data. Correspondingly, the region based segmentation approach is utilizing for the multi-lane detection. An entropy based fusion model is used because this method preserved all the information in the image and reduces the noise effects. The performance of proposed model is analyzed in terms of accuracy, sensitivity, and specificity, providing superior results with values 0.991, 0.992, and 0.887, respectively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.