Abstract
We describe a new multilamination technique to accelerated mixing of centrifugally pumped flows through a simple network of preferentially radial, low-aspect-ratio microchannels. Mixing by multilamination is enforced by planar split-and-recombine structures, consisting of a common inlet for two concurrent centrifugal flows, and a transient region of parallel microchannels which merge again into one common outlet. A repatterning of flow is observed in each parallel channel which is induced by the Coriolis pseudo force. In a distinct regime of the parameter space spanned by the speed of rotation, the channel geometry as the viscosity (and density) of the liquids, a multilamination of flow is achieved at the entrance of the common outlet channel. We also present parallelization and cascading strategies to further enhance the homogeneity and throughput of mixing by multilamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.