Abstract
Multi-label feature selection has become an indispensable pre-processing step to deal with possible irrelevant and redundant features, to decrease computational burdens, improve classification performance and enhance model interpretability, in multi-label learning. Mutual information (MI) between two random variables is widely used to describe feature-label relevance and feature-feature redundancy. Furthermore, multivariate mutual information (MMI) is approximated via limiting three-degree interactions to speed up its computation, and then is used to characterize relevance between selected feature subset and label subset. In this paper, we combine MMI-based relevance with MI-based redundancy to define a new max-relevance and min-redundancy feature selection criterion (simply MMI). To search for a globally optimal solution, we add an auxiliary mutation operation to existing binary particle swarm optimization with mutation to control the number of selected features strictly to form a new PSO variant: M2BPSO. Integrating MMI with M2BPSO builds a novel multi-label feature selection method: MMI-PSO. The experiments on four benchmark data sets demonstrate the effectiveness of our proposed algorithm, according to four instance-based classification evaluation metrics, compared with three state-of-the-art feature selection approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.