Abstract

It is becoming good practice to prepare risk assessments of river basins and coastal areas on a global scale. The novel sustainable flood retention basin (SFRB) concept provides a rapid classification technique for impoundments, which have a pre-defined or potential role in flood defense. However, most SFRB do often perform multiple functions simultaneously and thus are associated with multiple SFRB types. Nevertheless, previous SFRB classification systems assign each SFRB to a specific type relying on its main function. To handle the problem, this study aims to comprehensively assess the multiple functions of SFRB with the help of multi-label classification. The popular multi-label classifiers multi-label support vector machine (MLSVM), multi-label K-nearest neighbor (MLKNN) and back-propagation for multi-label learning (BP-MLL) were applied to predict the types of SFRB based on two data sets (one from Scotland and one from Baden). Findings indicate that multi-label classification schemes provide deeper insights into all potential functions of SFRB and help planners and engineers to make better use of them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.