Abstract

Multi-label image data is becoming ubiquitous. Image semantic understanding is typically formulated as a classification problem. This paper focuses on multi-label active learning for image classification. It first extends a traditional example based active learning method for multilabel active learning for image classification. Since the traditional example based active method doesn't work well, we propose a novel example-label based multi-label active learning method. Our experimental results on two image datasets demonstrate that the proposed method significantly reduces the labeling workload and improves the performance of the built classifier. Additionally, we conduct experiments on two other types of multi-label datasets for validating the versatility of our proposed method, and the experimental results show the consistent effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.