Abstract

Multi-key Homomorphic Encryption (MKHE) scheme can homomorphically evaluate ciphertexts encrypted by different keys, which can effectively protect the privacy information of data holders in the joint computing of cloud services. Since the first full Homomorphic encryption scheme was proposed, bootstrapping is the only way to realize the arbitrary depth homomorphic computation of MKHE schemes. But bootstrap operation is quite expensive. In order to implement fast bootstrapping in MKHE schemes, previous works proposed multi-key TFHE schemes to implement low-latency bootstrapping and output a univariate function of messages after bootstrapping, called Programmable Bootstrapping (PBS). However, these schemes can only encrypt single-bit messages. PBS only outputs a function. And after a homomorphic operation, a bootstrap is required, which undoubtedly results in an increase in the cost of the whole multi-key homomorphic encryption operation. In this paper, we propose a MKHE scheme for multi-output PBS. For this purpose, we study the encryption method and homomorphic operation steps of MKHE, and add BFV homomorphic encryption multiplication and multi-key ciphertext relinearization. We separate the homomorphic operation from bootstrapping. We homomorphically evaluate test polynomials for multiple functions. In contrast to previous MKHE schemes, we support the output of multiple message-related functions with a single bootstrapping operation on the ciphertext. It is no longer limited to encrypting single-bit plaintext, and an effective ciphertext packaging technology is added. According to the analysis given in this paper, it is known that in the scenario of multi-party joint computation, the proposed scheme can be implemented with less bootstrapping when the same number of functions are homomorphically operated. This will effectively reduce the computational overhead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call