Abstract
Soft robotic hands provide better safety and adaptability than rigid robotic hands. Furthermore, a multijointed structure that imitates the movement of a human hand represents significant progress in realizing its anthropomorphism. In this study, we present a multijointed pneumatic soft anthropomorphic hand that is capable of expressing letters through sign language and grasping different objects using three grasping modes, namely thumb grasping, precision grasping, and power grasping. This novel soft hand is composed of multijointed soft fingers, a thumb, thenar, and 3D-printed palm. Tests were performed to characterize the displacement track and force performance of the fingers, thumb, and thenar, which was made by mold casting silicone rubber. In addition, a dedicated pneumatic control system was designed and built to enable the soft hand to automatically perform the tasks set by specific programs. This new multijointed hand with a flexible thenar represents significant progress in the development of anthropomorphic bionic hands, offering the benefits of fast response, low cost, as well as ease of fabrication, assembly, and replacement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.