Abstract

In this paper, a multi-instance multi-label algorithm based on neural networks is proposed for image classification. The proposed algorithm, termed multi-instance multi-label neural network (MIMLNN), consists of two stages of MultiLayer Perceptrons (MLP). For multi-instance multi-label image classification, all the regional features are fed to the first-stage MLP, with one MLP copy processing one image region. After that, the MLP in the second stage incorporates the outputs of the first-stage MLPs to produce the final labels for the input image. The first-stage MLP is expected to model the relationship between regions and labels, while the second-stage MLP aims at capturing the label correlation for classification refinement. Error Back-Propagation (BP) approach is adopted to tune the parameters of MIMLNN. In view of that traditional gradient descent algorithm suffers from long-term dependency problem, a refined BP algorithm named Rprop is extended to effectively train MIMLNN. The experiments are conducted on a synthetic dataset and the Corel dataset. Experimental results demonstrate the superior performance of MIMLNN comparing with state-of-the-art algorithms for multi-instance multi-label image classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.