Abstract

Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive to understand human behaviour and inherently anticipate human intentions. Human activity data obtained via wearable sensors like gyroscope and accelerometer is in the form of time series data, as each reading has a timestamp associated with it. For HAR, it is important to extract the relevant temporal features from raw sensor data. Most of the approaches for HAR involves a good amount of feature engineering and data pre-processing, which in turn requires domain expertise. Such approaches are time-consuming and are application-specific. In this work, a Deep Neural Network based model, which uses Convolutional Neural Network, and Gated Recurrent Unit is proposed as an end-to-end model performing automatic feature extraction and classification of the activities as well. The experiments in this work were carried out using the raw data obtained from wearable sensors with nominal pre-processing and don’t involve any handcrafted feature extraction techniques. The accuracies obtained on UCI-HAR, WISDM, and PAMAP2 datasets are 96.20%, 97.21%, and 95.27% respectively. The results of the experiments establish that the proposed model achieved superior classification performance than other similar architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.