Abstract

Nanocomposites of graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanoparticles (GO/PDDA/Ag NPs) were constructed via a self–assembly process as a surface-enhanced Raman scattering (SERS) substrate, in which functional macromolecules PDDA were utilized to load GO and support Ag NPs. Fundamental SERS performance of this SERS substrate was evaluated using rhodamine 6G (R6G), which displayed excellent enhancement effect, transferable nature and high stability of the synthesized GO/PDDA/Ag NPs substrate. Furthermore, the synthesized SERS substrate was employed in the sensitive detection of adenine with a linear range of 0.05–1000 μM and low detection limit of 1 nM. Other than the large surface area of GO, multiple-hydrogen bond interactions between adenine and the modified PDDA were another important factor in capturing adenine molecules and enhancing SERS signal. The hydrogen bond interaction was calculated using quantum mechanical calculations. Moreover, determination of adenine in aqueous solutions was achieved with good anti-interference ability against other nucleic bases with similar structures, such as guanine, cytosine and thymine. Therefore, GO/PDDA/Ag can be anticipated to be a potential substrate for label-free, fast and sensitive SERS detection of adenine in the field of bioanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.