Abstract

For nonregenerative multihop multiple-input multiple-output (MIMO) relay communication systems, the optimal source precoding matrix and the optimal relay amplifying matrices have been recently established for a broad class of objective functions subjecting to the transmission power constraint at each node. However, existing works do not consider any quality-of-service (QoS) constraints, which are important in practical communication systems. In this paper, we derive the optimal source and relay matrices of a multihop MIMO relay system that guarantee the predetermined QoS criteria be attained with the minimal total transmission power. In particular, we consider two types of receivers at the destination node: the linear minimal mean-squared error (MMSE) receiver and the nonlinear decision feedback equalizer (DFE) based on the MMSE criterion. We show that for both types of receivers, the solution to the original optimization problem can be upper-bounded by using a successive geometric programming (GP) approach and lower-bounded by utilizing a dual decomposition technique. Simulation results show that both bounds are tight, and to obtain the same QoS, the MIMO relay system using the nonlinear MMSE-DFE receiver requires substantially less total transmission power than the linear MMSE receiver-based system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call