Abstract

Efficient operation of wireless networks requires distributed routing and scheduling algorithms that take into account interference constraints. Recently, a few algorithms for networks with primary- or secondary-interference constraints have been developed. Due to their distributed operation, these algorithms can achieve only a guaranteed fraction of the maximum possible throughput. It was also recently shown that if a set of conditions (known as Local Pooling) is satisfied, simple distributed scheduling algorithms achieve 100% throughput. However, previous work regarding Local Pooling focused mostly on obtaining abstract conditions and on networks with single-hop interference or single-hop traffic. In this paper, we identify several graph classes that satisfy the Local Pooling conditions, thereby enabling the use of such graphs in network design algorithms. Then, we study the multihop implications of Local Pooling. We show that in many cases, as the interference degree increases, the Local Pooling conditions are more likely to hold. Consequently, although increased interference reduces the maximum achievable throughput of the network, it tends to enable distributed algorithms to achieve 100% of this throughput. Regarding multihop traffic, we show that if the network satisfies only the single-hop Local Pooling conditions, distributed joint routing and scheduling algorithms are not guaranteed to achieve maximum throughput. Therefore, we present new conditions for Multihop Local Pooling, under which distributed algorithms achieve 100% throughout. Finally, we identify network topologies in which the conditions hold and discuss the algorithmic implications of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.