Abstract
A collection of smaller, less expensive sensor nodes called wireless sensor networks (WSNs) use their sensing range to gather environmental data. Data are sent in a multi-hop manner from the sensing node to the base station (BS). The bulk of these sensor nodes run on batteries, which makes replacement and maintenance somewhat difficult. Preserving the network's energy efficiency is essential to its longevity. In this study, we propose an energy-efficient multi-hop routing protocol called ESO-GJO, which combines the enhanced Snake Optimizer (SO) and Golden Jackal Optimization (GJO). The ESO-GJO method first applies the traditional SO algorithm and then integrates the Brownian motion function in the exploitation stage. The process then integrates multiple parameters, including the energy consumption of the cluster head (CH), node degree of CH, and distance between node and BS to create a fitness function that is used to choose a group of appropriate CHs. Lastly, a multi-hop routing path between CH and BS is created using the GJO optimization technique. According to simulation results, the suggested scheme outperforms LSA, LEACH-IACA, and LEACH-ANT in terms of lowering network energy consumption and extending network lifetime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.