Abstract

In this study, the response of a multihinged articulated offshore tower subjected to different seismic excitations in the presence of random waves was investigated. The study includes near-fault as well as far-fault earthquake ground motions. The contribution of the vertical component to the overall seismic behavior of the articulated tower is examined. The nonlinearities associated with the system owing to variable submergence, drag force, variable buoyancy, and added mass, along with the geometry, are also considered. The nonlinear dynamic equation of motion is formulated considering the Lagrangian approach, which is solved in time domain by the Newmark-beta integration scheme. The results are expressed in the form of time histories and spectral densities of the dynamic responses. Dynamic response quantities such as rotational angle, hinge shear, axial force at the articulation, and bending moment at peak ground acceleration in different seismic sea environment are discussed. The spectral responses unde...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.