Abstract
Monte Carlo calculations have long been used to benchmark more a mate approximate solution methods for reactor physics problems. The power of VIM (ref 1) lies partly in the detailed geometrical representations incorporating the (generally) curved surfaces of combinatorial geometry, and partly in the fine energy detail of pointwise cross sections which are independent of the neutron spectrum. When differences arise between Monte Carlo and deterministic calculations, the question arises, is the error in the multigroup cross sections, in the treatment of transport effects, or in the mesh-based treatment of space in the deterministic calculation? The answers may not be obvious, but may be identified by combining the exact geometry capability of VIM with the multigroup formalism. We can now run VIM in a multigroup mode by producing special VIM Material files which contain point-wise data describing multigroup data with histograms. This forces VIM to solve the multigroup problem with only three small code modifications. P{sub N} scattering is simulated with the usual tabulated angular distributions with 20 equally-sized scattering angle cosine meshes. This document describes the VIM multigroup capability, the procedures for generating multigroup cross sections for VIM, and their use. The multigroup cross section generating code, ISOVIM, is described, and benchmark testing is documented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.