Abstract

Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms are handled efficiently by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for a large number of processors. We built and present here a multigrid algorithm for these types of problems that outperforms a spectral solution employing the highly optimized FFTW library. This solver is suitable for high performance computing and may be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with harmonic test functions as well as turbulent 2D magnetohydrodynamic simulations. It is also shown that an anisotropic operator without mixed-derivative terms improves model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call