Abstract

A biharmonic-type interpolation method is presented to solve 2D and 3D scattered data interpolation problems. Unlike the methods based on radial basis functions, which produce a large linear system of equations with fully populated and often non-selfadjoint and ill-conditioned matrix, the presented method converts the interpolation problem to the solution of the biharmonic equation supplied with some non-usual boundary conditions at the interpolation points. To solve the biharmonic equation, fast multigrid techniques can be applied which are based on a non-uniform, non-equidistant but Cartesian grid generated by the quadtree/octtree algorithm. The biharmonic interpolation technique is applied to the multiple and dual reciprocity method of the BEM to convert domain integrals to the boundary. This makes it possible to significantly reduce the computational cost of the evaluation of the appearing domain integrals as well as the memory requirement of the procedure. The resulting method can be considered as a special grid-free technique, since it requires no domain discretisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call