Abstract

A computationally efficient multigrid algorithm for upwind edge-based finite element schemes is developed for the solution of the two-dimensional Euler and Navier–Stokes equations on unstructured triangular grids. The basic smoother is based upon a Galerkin approximation employing an edge-based formulation with the explicit addition of an upwind-type local extremum diminishing (LED) method. An explicit time stepping method is used to advance the solution towards the steady state. Fully unstructured grids are employed to increase the flexibility of the proposed algorithm. A full approximation storage (FAS) algorithm is used as the basic multigrid acceleration procedure. Copyright © 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.