Abstract
The steady incompressible Navier–Stokes equations in three dimensions are solved for neutral and stably stratified flow past three-dimensional obstacles of increasing spanwise width. The continuous equations are approximated using a finite volume discretisation on staggered grids with a flux-limited monotonic scheme for the advective terms. The discrete equations which arise are solved using a nonlinear multigrid algorithm with up to four grid levels using the SIMPLE pressure correction method as smoother. When at its most effective the multigrid algorithm is demonstrated to yield convergence rates which are independent of the grid density. However, it is found that the asymptotic convergence rate depends on the choice of the limiter used for the advective terms of the density equation, and some commonly used schemes are investigated. The variation with obstacle width of the influence of the stratification on the flow field is described and the results of the three-dimensional computations are compared with those of the corresponding computation of flow over a two-dimensional obstacle (of effectively infinite width). Also given are the results of time-dependent computations for three-dimensional flows under conditions of strong static stability when lee-wave propagation is present and the multigrid algorithm is used to compute the flow at each time step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.