Abstract

Time-parallel algorithms seek greater concurrency by decomposing the temporal domain of a partial differential equation, providing possibilities for accelerating the computation of its solution. While parallelisation in time has allowed remarkable speed-ups in applications involving parabolic equations, its effectiveness in the hyperbolic framework remains debatable: growth of instabilities and slow convergence are both strong issues in this case, which often negate most of the advantages from time-parallelisation. Here, we focus on the Multigrid Reduction in Time algorithm, investigating in detail its performance when applied to non-linear conservation laws with a variety of discretisation schemes. Specific attention is given to high-accuracy Weighted Essentially Non-Oscillatory reconstructions, coupled with Strong Stability Preserving integrators, which are often the discretisations of choice for such equations. A technique to improve the performance of MGRIT when applied to a low-order, more dissipative scheme is also outlined. This study aims at identifying the main causes for degradation in the convergence speed of the algorithm and finds the Courant-Friedrichs-Lewy limit to be the principal determining factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.