Abstract

The symmetric Sinc-Galerkin method applied to a separable second-order self-adjoint elliptic boundary value problem gives rise to a system of linear equations ( ? x ?D y + D x ?? y ) u = g where ? is the Kronecker product symbol, ? x and ? y are Toeplitz-plus-diagonal matrices, and D x and D y are diagonal matrices. The main contribution of this paper is to present a two-step preconditioning strategy based on the banded matrix approximation and the multigrid iteration for these Sinc-Galerkin systems. Numerical examples show that the multigrid preconditioner is practical and efficient to precondition the conjugate gradient method for solving the above symmetric Sinc-Galerkin linear system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.