Abstract
AbstractWe examine the dual formulation of the frictionless Signorini problem for a deformable body in contact with a rigid obstacle. We discretize the problem by means of the finite element method. Since the dual formulation solves directly for the stress variable and is not affected by locking, it is very attractive for many engineering applications. However, it is hard to solve it efficiently, since many challenges arise. First, the stress belongs to the non‐Sobolev space . Second, the matrix block related to the stress is only semi‐positive definite in the incompressible limit. Third, global equality constraints and box‐constraints are enforced. In this paper, we propose a novel and optimal nonlinear multigrid method for the dual formulation of the Signorini problem, that works even in the incompressible limit. We opt for the combination of a truncation of the basis functions strategy and a nonlinear monolithic patch smoother with Robin conditions of parameter . Numerical experiments show that multigrid performance is recovered if is chosen properly. We propose an algorithm to dynamically update the parameter during the multigrid process, in order to provide a near optimal value of .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.