Abstract
The widely used density matrix renormalization group (DRMG) method often fails to converge in systems with multiple length scales, such as lattice discretizations of continuum models and dilute or weakly doped lattice models. The local optimization employed by DMRG to optimize the wave function is ineffective in updating large-scale features. Here we present a multigrid algorithm that solves these convergence problems by optimizing the wave function at different spatial resolutions. We demonstrate its effectiveness by simulating bosons in continuous space and study nonadiabaticity when ramping up the amplitude of an optical lattice. The algorithm can be generalized to tensor network methods and combined with the contractor renormalization group method to study dilute and weakly doped lattice models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.