Abstract

The synthesis of silica with preserved porosity and tailored morphology by sol–gel process can be achieved by hybrid organic–inorganic synthesis: a modified alkoxide, viz. 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS), is introduced during the base catalysed synthesis with TEOS as main silica precursor. Additives with methoxy groups induce a nucleation mechanism because of their higher reactivity compared to main reagents with ethoxy groups. The nucleation model presented in previous papers was refined by taking into account the porosity of the particles and calculating the number of additive molecules by nucleus for each value of the ratio of additive/main reagent. The extrapolation of the synthesis process to semi-industrial scale goes through the replacement of laboratory grade reagents by industrial grade reagents and the scaling up to the production of higher quantities. At each of these two steps, the morphology and porosity of the samples has been compared to those of laboratory grade samples. It was shown that the texture and particle size has quasi totally been preserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call