Abstract

Cells maintain a stable size as they grow and divide. Inspired by the available experimental data, most proposed models for size homeostasis assume size-control mechanisms that act on a timescale of one generation. Such mechanisms lead to short-lived autocorrelations in size fluctuations that decay within less than two generations. However, recent evidence from comparing sister lineages suggests that correlations in size fluctuations can persist for many generations. Here we develop a minimal model that explains these seemingly contradictory results. Our model proposes that different environments result in different control parameters, leading to distinct inheritance patterns. Multigenerational memory is revealed in constant environments but obscured when averaging over many different environments. Inferring the parameters of our model from Escherichia coli size data in microfluidic experiments, we recapitulate the observed statistics. Our paper elucidates the impact of the environment on cell homeostasis and growth and division dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.