Abstract
Previous studies indicated the grain yield and compositions of wheat (Triticum aestivum L.) were affected by long-term elevated atmospheric CO2 concentration conditions. However, the roles of protein expression in wheat grain quality changes under multigenerational elevated atmospheric CO2 concentration are still rarely known. This study explored that the changes of grain quality in wheat offspring induced by multigenerational elevated atmospheric CO2 concentration exposure and analyzed the roles of the differently expressed proteins using 4D proteomics in regulating the wheat grain quality. The changes of grain protein accumulation, gluten index and dough development time indicated that the nutritional and end-use quality of wheat grains were directly affected by elevated atmospheric CO2 concentration. This was mainly due to the changed expressions of α-amylase inhibitors, glutamine synthetase, glutamate dehydrogenase, formamidase and β-glucosidase, which regulated the starch accumulation and nitrogen metabolism in grains. This study elucidates the mechanisms underlying the effects of long-term elevated atmospheric CO2 concentration on wheat grain quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.