Abstract

The present experimental study was carried out with rats to evaluate the effects of whole body exposure to 2.14 GHz band code division multiple access (W-CDMA) signals for 20 h a day, over three generations. The average specific absorption rate (SAR, in unit of W/kg) for dams was designed at three levels: high (<0.24 W/kg), low (<0.08 W/kg), and 0 (sham exposure). Pregnant mothers (4 rats/group) were exposed from gestational day (GD) 7 to weaning and then their offspring (F1 generation, 4 males and 4 females/dam, respectively) were continuously exposed until 6 weeks of age. The F1 females were mated with F1 males at 11 weeks old, and then starting from GD 7, they were exposed continuously to the electromagnetic field (EMF; one half of the F1 offspring was used for mating, that is, two of each sex per dam and 8 males and 8 females/group, except for all offspring for the functional development tests). This protocol was repeated in the same manner on pregnant F2 females and F3 pups; the latter were killed at 10 weeks of age. No abnormalities were observed in the mother rats (F0 , F1 , and F2 ) and in the offspring (F1 , F2 , and F3 ) in any biological parameters, including neurobehavioral function. Thus, it was concluded that under the experimental conditions applied, multigenerational whole body exposure to 2.14 GHz W-CDMA signals for 20 h/day did not cause any adverse effects on the F1 , F2 , and F3 offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call