Abstract

In the aquatic environment, adverse outcomes from dietary polycyclic aromatic hydrocarbon (PAH) exposure are poorly understood, and multigenerational developmental effects following exposure to PAHs are in need of exploration. Benzo[a]pyrene (BaP), a model PAH, is a recognized carcinogen and endocrine disruptor. Here adult zebrafish (F0) were fed 0, 10, 114, or 1012μg BaP/g diet at a feed rate of 1% body weight twice/day for 21 days. Eggs were collected and embryos (F1) were raised to assess mortality and time to hatch at 24, 32, 48, 56, 72, 80, and 96h post fertilization (hpf) before scoring developmental deformities at 96 hpf. F1 generation fish were raised to produce the F2 generation followed by the F3 and F4 generations. Mortality significantly increased in the higher dose groups of BaP (2.3 and 20μg BaP/g fish) in the F1 generation while there were no differences in the F2, F3, or F4 generations. In addition, premature hatching was observed among the surviving fish in the higher dose of the F1 generation, but no differences were found in the F2 and F3 generations. While only the adult F0 generation was BaP-treated, this exposure resulted in multigenerational phenotypic impacts on at least two generations (F1 and F2). Body morphology deformities (shape of body, tail, and pectoral fins) were the most severe abnormality observed, and these were most extreme in the F1 generation but still present in the F2 but not F3 generations. Craniofacial structures (length of brain regions, size of optic and otic vesicles, and jaw deformities), although not significantly affected in the F1 generation, emerged as significant deformities in the F2 generation. Future work will attempt to molecularly anchor the persistent multigenerational phenotypic deformities noted in this study caused by BaP exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call