Abstract

Arsenic (As) is a persistent toxic substance, however, its toxicity to marine zooplankton remains unclear. In this study, copepods were exposed to a series of dissolved arsenate (As(V)) for four generations (F0–F3) and subsequently depurated in clean seawater for two generations (F4–F5) to assess multigenerational toxicity of As(V). As(V) exposure prolonged copepod development. The development time were 1.9, 2.4, and 3.4 days longer than the control in F0 when exposed to 50, 100, and 500 μg/L As(V), respectively, and the toxicity increased with generations. Moreover, As(V) reduced the reproductive capacity of copepods, and this effect become more severe during generation succession. The 10-day fecundities were reduced from 80 to 85 eggs per female in the control to 42 eggs per female, the lowest level, in 500 μg/L As(V) exposure group in F3. Nevertheless, the fecundity was recovered to the control level in the offspring of the 50 and 100 μg/L As(V) exposed groups (F4), suggesting it was an acclimation effect of copepods during As(V) exposure. In addition, the survival rate, development time, and reproductive parameters were significantly correlated with the As accumulation in copepods. Overall, As(V) exposure caused As bioaccumulation which negatively affected copepods' survival, development, and reproductive traits, and this toxic effect was amplified with generations and concentrations. Therefore, the multigenerational toxicity of As should be considered in the environmental risk assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call