Abstract
Animal toxicological studies often fail to mimic the complexity of the human exposome, associating low doses, combined molecules and long-term exposure. Since the reproductive potential of a woman begins in the fetal ovary, the literature regarding the disruption of its reproductive health by environmental toxicants remains limited. Studies draw attention to follicle development, a major determinant for the quality of the oocyte, and the preimplantation embryo, as both of them are targets for epigenetic reprogramming. The "Folliculogenesis and Embryo Development EXPOsure to a mixture of toxicants: evaluation in the rabbit model" (FEDEXPO) project emerged from consideration of these limitations and aims to evaluate in the rabbit model the impacts of an exposure to a mixture of known and suspected endocrine disrupting chemicals (EDCs) during two specific windows, including folliculogenesis and preimplantation embryo development. The mixture combines eight environmental toxicants, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), 2,2'4,4'-tetrabromodiphenyl ether (BDE-47), di(2-ethylhexyl) phthalate (DEHP) and bisphenol S (BPS), at relevant exposure levels for reproductive-aged women based on biomonitoring data. The project will be organized in order to assess the consequences of this exposure on the ovarian function of the directly exposed F0 females and monitor the development and health of the F1 offspring from the preimplantation stage. Emphasis will be made on the reproductive health of the offspring. Lastly, this multigenerational study will also tackle potential mechanisms for the inheritance of health disruption via the oocyte or the preimplantation embryo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.