Abstract
Genotoxins are capable of multigenerational impacts on natural populations via DNA damage and mutations. Sexual reproduction is assumed to reduce the long term consequences of genotoxicity for individual fitness and should therefore reduce population level effects. However, rather few empirical studies have quantified the magnitude of this effect. We tried to analyse the multigenerational demographic responses of sexual Artemia franciscana and asexual Artemia parthenogenetica due to chronic genotoxicity by a reference mutagen, ethyl methane sulfonate (EMS). A prospective (elasticity analysis) and retrospective (differences and contributions) perturbation analysis was carried out to understand the interactions of life history traits with population growth rate λ by comparing elasticities, differences and contributions of vital rates to λ. None of the previous studies have compared the effects of chronic genotoxicity using prospective and retrospective perturbation analyses in a sexual and asexual species over generations. The behaviour of a population with lower growth rate in the presence of genotoxicants in the field was studied by simulating reduced fertilities in the LTRE design. The results of prospective and retrospective perturbation analyses of effects on λ showed that population growth rate was proportionally more sensitive to juvenile survival whereas the effect of EMS on juvenile fertility contributed more to the variations in population growth rate in both the species and this effect was due to the high growth rate of Artemia. Simulations of lower population growth rate in the model showed that adult fertility and survival are also of importance. Sexual reproduction substantially mitigated the long term consequences of genetic damage, although these would be greater if population growth rate were lower. So multigenerational population level consequences of genotoxicity were much greater in an asexual species. So asexual species, and those with a parthenogenetic phase in their life cycle, may be particularly vulnerable to the effects of environmental mutagens. Ecological risk assessments should include information from multigenerational studies, as responses to genotoxicity may vary depending on the life history strategies and reproductive modes of the species under consideration. Single generation studies may under or over-estimate risks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.