Abstract

An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.