Abstract
The high-capacity binary bacterial artificial chromosome (BIBAC) vector system permits the insertion of large fragments of DNA, up to 150 kb, into plants via Agrobacterium-mediated transformation. Here, we describe an optimized protocol for transformation of japonica rice (Oryza sativa L.) using this system. Calli derived from mature embryos are transformed using Agrobacterium strain LBA4404 that carries the BIBAC vector and the super-virulent helper plasmid pCH32. Transformed calli are then regenerated using optimized media and tested for transgene integration by PCR, GUS assay, and Southern blot analyses.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.