Abstract

Cospeciation between hosts and parasites offers a unique opportunity to use information from parasites to infer events in host evolutionary history. Although lice (Insecta: Phthiraptera) are known to cospeciate with their hosts and have frequently served as important markers to infer host evolutionary history, most molecular studies are based on only one or two markers. Resulting phylogenies may, therefore, represent gene histories (rather than species histories), and analyses of multiple molecular markers are needed to increase confidence in the results of phylogenetic analyses. Herein, we phylogenetically examine nine molecular markers in primate sucking lice (Phthiraptera: Anoplura) and we use these markers to estimate divergence times among louse lineages. Individual and combined analyses of these nine markers are, for the most part, congruent, supporting relationships hypothesized in previous studies. Only one marker, the nuclear protein-coding gene Histone 3, has a significantly different tree topology compared to the other markers. The disparate evolutionary history of this marker, however, has no significant effect on topology or nodal support in the combined phylogenetic analyses. Therefore, phylogenetic results from the combined data set likely represent a solid hypothesis of species relationships. Additionally, we find that simultaneous use of multiple markers and calibration points provides the most reliable estimates of louse divergence times, in agreement with previous studies estimating divergences among species. Estimates of phylogenies and divergence times also allow us to verify the results of [Reed, D.L., Light, J.E., Allen, J.M., Kirchman, J.J., 2007. Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol. 5, 7.]; there was probable contact between gorilla and archaic hominids roughly 3 Ma resulting in a host switch of Pthirus lice from gorillas to archaic hominids. Thus, these results provide further evidence that data from cospeciating organisms can yield important information about the evolutionary history of their hosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call