Abstract

We demonstrate the utility of cavity-enhanced Raman spectroscopy (CERS) as a unique multigas analysis tool for power transformer diagnosis. For this purpose, improvements have been added to our recently introduced CERS apparatus. Based on optical feedback frequency-locking, laser radiation is coupled into a high-finesse optical cavity, thus resulting in huge intracavity laser power. With 20 s exposure time, ppm-level gas sensing at 1 bar total pressure is achieved, including carbon dioxide (CO2), carbon monoxide (CO), hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), nitrogen (N2), and oxygen (O2). By using the internal standard gas (sulfur hexafluoride, SF6), the quantification of multigas with high accuracy is also realized, which is confirmed by the measurement of calibration gases. For fault diagnosis, transformer oil is sampled from a 110 kV power transformer in service. Dissolved gases are extracted and analyzed by the CERS apparatus. Then the transformer is diagnosed according to the measurement results. CERS has the ability to analyze multigas with high selectivity, sensitivity, and accuracy, it has great potential in gas sensing fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.