Abstract

Transforming the resistive plate chambers from charged-particle into gamma-quanta detectors opens the way towards their application as a basic element of a hybrid imaging system, which combines positron emission tomography (PET) with magnetic resonance imaging (MRI) in a single device and provides non- and minimally- invasive quantitative methods for diagnostics. To this end, we performed detailed investigations encompassing the whole chain from the annihilation of the positron in the body, through the conversion of the created photons into electrons and to the optimization of the electron yield in the gas. GEANT4 based simulations of the efficiency of the RPC photon detectors with different converter materials and geometry were conducted for optimization of the detector design. The results justify the selection of a sandwich-type gas-insulator-converter design, with Bi or Pb as converter materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.