Abstract

Interpreting the biogeographic distribution and underlying mechanisms of functional traits not only contributes to revealing the spatiotemporal dynamics of species biodiversity but also helps to maintain ecological stability during environmental variations. However, little is known about the functional profiles of diatom communities over large river systems. Herein, we provided the first blueprints about the spatiotemporal distributions and driving forces of functional traits for both planktonic and sedimentary diatoms over the 6030 km continuum of the Yangtze River, with the help of the high-throughput sequencing and functional identification. By investigating the 28 functional traits affiliated into five categories, we found that planktonic diatom functions showed clearer landform-heterogeneity patterns (ANOSIM R = 0.336) than sedimentary functions (ANOSIM R = 0.172) along the river, represented by life-forms and ecological-guilds prominent in water-plateau as well as cell-sizes and life-forms particularly in sediment-plateau. Planktonic diatom functions also displayed higher richness and network complexity in plateau (richness: 58.70 ± 9.30, network edges: 65) than in non-plateau regions (23.82 ± 13.16, 16), promoting the stability and robustness of diatom functions against the high-radiation and low-temperature plateau environment. Environmental selection (mainly exerted by PAR, UV, and Tw) played crucial roles in determining the functional variations of planktonic diatoms (explaining 80.5%) rather than sedimentary diatoms (14.5%) between plateau and non-plateau regions. Meanwhile, planktonic diatom traits within life-forms were identified to be well responsive to the ecological environment quality (r = 0.56–0.60, P < 0.001) in the Yangtze. This study provided comprehensive insights into the multifunctionality of diatoms and their responses to environmental disturbance and environment quality, which helps to develop effective strategies for maintaining ecological stability in changing river environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call